2. Основные параметры и характеристики

Модельный ряд АГС «UNI-SEP» представлен станциями, имеющими одинаковую кон рукцию, включающими однородные конструктивные элементы, и отличающимися габаритными размерами и производительностью.

Все конструктивные элементы и детали АГС, контактирующие со сточными водами, выполнены из коррозийно-стойкого материала — полипропилена.

Станции представляют собой герметичный цилиндрический моноблок подземного исполнения, разделенный перегородками на технологические камеры с системой переливов.

2.1. Устройство и принцип работы AГС «UNI-SEP»

Принцип работы АГС основан на многоступенчатой технологии механической, анаэробной и аэробной очистки сточных вод с участием простейших микроорганизмов активного ила.

Хозяйственно-бытовые сточные воды поступают в приемную камеру (**A**), которая служит для усреднения стоков по количественному и качественному составу. Здесь происходит первичная механическая очистка стоков. За счет промежуточно установленной перегородки осуществляется отделение взвешенных веществ и других нерастворимых примесей (песка, мусора и пр). Также в приемной камере происходит минерализация избыточного активного ила и биопленки.

Далее осветленная сточная вода поступает в биореактор анаэробный (**Б**), где происходит биологическая очистка и удаление нитратов в присутствии анаэробных микроорганизмов, закрепленных на ершовой загрузке.

Затем сточная вода поступает в аэротенк (**B**), где биологическая очистка осуществляется путем окисления органических соединений аэробными микроорганизмами (активным илом), находящимися в аэрируемом слое.

Во вторичном отстойнике (**Г**) происходит разделение воды и активного ила, который оседает на дно и удаляется с помощью эрлифта в приемную камеру, а осветленная вода поступает в биореактор аэробный (**Д**).

В биореакторе аэробном, благодаря ершовой загрузке, образуется биопленка (аэробные микроорганизмы), которая осуществляет глубокую биологическую очистку загрязнений, оставшихся в сточной воде после прохождения предыдущих ступеней очистки.

Для отделения биопленки и окончательного осветления очищенная сточная вода поступает в третичный отстойник (**E**), оборудованный эрлифтом, который удаляет осадок в приемную камеру.

Очищенная сточная вода из третичного отстойника самотеком либо принудительно (зависит от комплектации) отводится за пределы станции в грунт (в дренажный колодец), либо на рельеф (в пределах периметра участка частного домовладения).

Технологическая схема работы станции "UNI-SEP" (с самотечным водоотведением)

Технологическая схема работы станции "UNI-SEP" P (с принцдительным водоотведением) (1) (H) 8

технологических камер: Условные обозначения

5

- А Приемная камера;
- Б Биореактор анаэробный;
 - В Аэротенк;
- Г Вторичный отстойник; Д Виореактор аэробный; Е Третичный отстойник.

Воздушная сеть

/словные обозначения:

- : биологически очищенная вода; - приток сточной воды;
- 3, 4 перфорированная аэрационная труба;
 - 5 эрлифт откачки ила из вторичного - аэрационный элемент;
- 7 эрлифт откачки ила из третичного отстойника;
 - отстойника;
- 8 уровень в камерах А, Б, В и Г; 9 уровень в камерах Д и Е; 10 - компрессор;11 - искусственные водоросли
 - (ершовая загрузка).
 - 12 насос
- 13 датчик уровня аварийный

2.2. Подбор АГС «UNI-SEP»

Производительность станций определяется количеством сточных вод (м³) в сутки. Расчет принято производить относительно количества постоянных пользователей. Нормы расхода воды на одного пользователя (потребителя) определены в СП 30.13330.2016 «Свод правил. Внутренний водопровод и канализация». Для жилых домов с горячим и холодным водопроводом и канализацией с ваннами норма расхода воды в среднем в сутки на одного пользователя равна 200 литров. Чтобы определить производительность АГС необходимо цифру максимального количества пользователей умножить на водопотребление одного пользователя в сутки. Например, АГС для обслуживания 5 человек имеет производительность 1000 л в сутки (1 м³/сут.)

Существует и более сложный способ расчета производительности станций по расходу воды приборами. Нормы для таких расчетов также определены в СП 30.13330.2016.

При выборе АГС необходимо обратить внимание на следующие критерии:

- число пользователей и объем сточных вод в сутки;
- количество, объем и единовременное использование сантехнических узлов и приборов;
- глубину выхода системы канализации из дома;
- расстояния от объекта канализования до AГС и до места сброса очищенных сточных вод;
- тип грунта (песок, суглинок, глина, плывун);
- планируемый способ водоотведения.

2.3. Технические характеристики АГС «UNI-SEP»

	Кол-во обсл. лиц	Производительность, м³/сут.	Производительность компрессора, л/мин.	Глубина труб			
Модель	.во обс			подводящего	отводящего	Вес, кг	
	Кол-			G1	G2		
0,6	3	0,6	60	600	650	118	
0,8	4	0,8	60	600	650	122	
1	5	1	60/80	600	650	130	
1,6	8	1,6	80	600	650	153	

	Габаритные размеры, мм							
Модель	Корпус		Лю	Общая				
	Длина	Диаметр	Количество люков обслужи-	Диаметр люков обслужи- вания	Высота люка обслужи- вания	максималь- ная высота станции (с грибком)		
	L	D	вания		Н1	H2		
0,6	1 500	1 020	2	530	645	1 750		
0,8	1 800	1 020	2	630	645	1 750		
1	2 000	1 020	3	530	645	1 750		
1,6	3 000	1 020	3	630	645	1 750		

2.4. Комплектность

- Аэрационная гибридная станция «UNI-SEP».
- Компрессор (соответствующий модели АГС).
- Технический паспорт.
- Декларация о соответствии Техническому регламенту Таможенного союза.
- Сертификат соответствия.

3. Упаковка, транспортировка, хранение

Аэрационная гибридная станция «UNI-SEP» поставляется в собранном виде и не требует специальной упаковки. Компрессор поставляется в таре предприятия-изготовителя.

АГС транспортируют в горизонтальном положении всеми видами транспортных средств в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

АГС (в таре или без тары) должна быть закреплена в транспортном средстве так, чтобы исключить ее перемещение при движении транспорта.

При транспортировке и хранении АГС «UNI-SEP» не допускается подвергать ее воздействию ударных нагрузок.

АГС допускается хранить в естественных условиях на открытом воздухе, на отапливаемом складе или в других условиях, исключающих возможность механического повреждения, на расстоянии не менее 3 м от отопительных и нагревательных приборов.

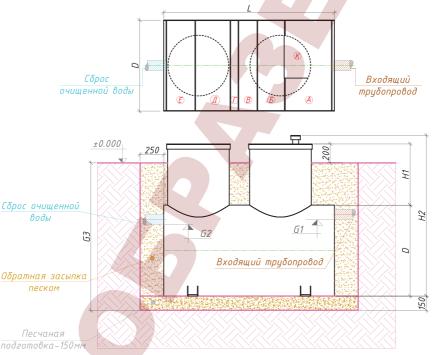
Хранение компрессорного и иного электрооборудования осуществляется согласно рекомендациям предприятия-изготовителя.

4. Инструкция по монтажу АГС «UNI-SEP»

Монтаж и запуск в эксплуатацию аэрационной гибридной станции «UNI-SEP» должен осуществляться в соответствии с проектной документацией или рекомендациями Производителя, указанными в монтажной схеме, настоящем техническом паспорте и Приложениях к нему, с учётом требований строительных норм и правил.

Лица, выполняющие монтаж и запуск в эксплуатацию АГС «UNI-SEP», должны иметь сертификат о прохождении обучения монтажу у Производителя!

Перед началом работ обратите внимание на следующее:

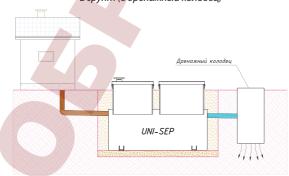

- наличие на объекте монтажа фильтров очистки питьевой воды (обезжелезивания и умягчения), т. к. слив продуктов их регенерации в АГС **ЗАПРЕЩЕН!**
- в соответствии со СП 32.13330.2012 при монтаже АГС необходимо предусмотреть вытяжную вентиляцию через стояк внутренней канализации здания (фановый стояк);
- не допускается совмещение шахт канализационного и вентиляционного стояков;
- размещение и передвижение тяжелых предметов и спец. техники над АГС в периметре котлована ЗАПРЕЩЕНО!
- не рекомендуется производить монтаж станций в периоды отрицательных температур ниже $-15\,^{\circ}$ C.

Последовательность проведения работ:

- 1. Место монтажа следует располагать на расстоянии от 2,5 до 5 метров от канализуемого объекта. Перед началом земляных работ необходимо определить место входа подводящей канализационной трубы в АГС для соответствующей ориентировки приемной камеры станции (для наименьших изгибов подводящей канализации) в соответствии с монтажной схемой.
- 2. На выбранном участке местности производится разметка котлована согласно монтажной схеме. Размер котлована рассчитывается по формуле:
- длина = L (длина корпуса) + 500 мм;
- ширина = D (диаметр корпуса) + 500 мм;
- глубина **(G3)** = H2 (максимальная высота станции) 200 мм (крышка Станции, включая петли, должна быть над уровнем земли на 20 см) + 150 мм (толщина песчаной подготовки).

Котлован рекомендуется раскапывать вручную. Стенки котлована должны выполняться с откосами с уклоном не менее і = 1:0,67. Перебор грунта в основании котлована не допускается. Если котлован выкопали по глубине больше нормы, то выравнивать дно необходимо песком с утрамбовкой и проливом водой. Лишний грунт (в объеме АГС) вывозится или перемещается в отвал, место которого определяет Заказчик. На дне котлована выполняется засыпка и уплотнение песчаной подготовки толщиной 150 мм (допускается изготовление или установка готовой бетонной плиты).

3. Подводящий самотечный трубопровод сточных вод Ø110 мм (НПВХ или ПВХ труба) укладывается в утеплителе на песчаную подушку с уклоном 1,5—2 см на метр в сторону АГС. На малых глубинах (до 1 м) канализация, выходящая из дома, даже без утепления, на расстояниях до 8 м не замерзает, т.к. в трубе сточные воды появляются в моменты пользования сан. приборами, и их температура гораздо выше 0 °С. В остальное время по канализационной трубе происходит отвод отработанного воздуха из АГС, температура которого также выше 0 °С. Утепление подводящей канализации необходимо делать для защиты от нарастания изнутри канализационной трубы конденсатного снега, который за длительные промежутки отсутствия жителей в зимние месяцы может заблокировать внутреннее пространство трубы. Толщина утеплителя зависит от климатических условий района строительства. Повороты подводящих магистралей не допускаются! Заглубление подводящего трубопровода в точке соединения с АГС не должно превышать 0,6 м (G1) от поверхности земли до низа трубы.



Условные обозначения:

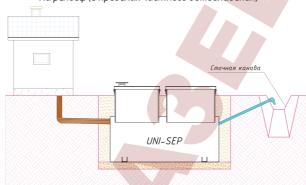
- А Приемная камера;
- Б Биореактор анаэробный:
- В Аэротенк:
- Г Вторичный отстойник;
- Д Биореактор аэробный;
- Е Третичный отстойник;
- К Компрессорный блок;
- D Диаметр корпуса;
- L Длина корпуса;
- Н1 Высота люка обслуживания;

- Н2 Максимальная высота станции;
- G1 Глубина входящего трубопровода (от поверхности земли до низа трубы);
- G2 Глубина выходящего трубопровода (от поверхности земли до низа трубы);
- G3 Глубина котлована;
- Люк обслуживания.
- - Вход в очистную станцию;
- 🖚 Выход из очистной станции.

- 4. В траншее подводящего трубопровода производится подведение к АГС электрического кабеля марки ПВС или ВВГ (электрический кабель прокладывается в трубе ПНД Ø16—20 мм).
- 5. Корпус АГС устанавливается горизонтально по центру котлована вручную или с применением спец. техники так, чтобы оставался зазор 250 мм между стенками станции и стенками котлована для обратной засыпки. Производится выравнивание корпуса с помощью уровня. Погрешность уклона не более ±10 мм!
 Утепление корпуса при необходимости производится гибкими или вспененными
 - Утепление корпуса при необходимости производится гибкими или вспененными гидрофобными видами утеплителя на глубину промерзания грунта. Толщина утеплителя зависит от климатических условий района строительства.
- 6. Для самотечного водоотведения предустановлен выходной патрубок Ø110 мм. При принудительном водоотведении патрубок самотечного водоотведения необходимо заглушить и осуществить врезку напорного трубопровода Ø32 мм. Производится присоединение подводящего и отводящего трубопроводов.
- 7. Обратная засыпка котлована осуществляется песком, который не должен содержать щебня, гравия и камней.
 - Обсыпка производится с подбивкой песка под нижнюю округлую часть станции с послойным уплотнением через каждые 200 мм и проливом водой каждого слоя с одновременным заполнением водой камер станции до уровня водослива. Подавать воду для заливки можно с помощью шланга через люки обслуживания. Обратная засыпка станции без воды ЗАПРЕЩЕНА! Во избежание «всплытия» полная откачка и нахождение после монтажа станции без содержимого ЗАПРЕЩЕНЫ!
- 8. Отвод очищенной воды из АГС зависит от типа грунта на площадке строительства:

В грунт (в дренажный колодец)

с/т — отведение очищенной воды самотеком.


Рекомендуется в грунтах с хорошей проницаемостью — песок, супесь. Отвод производится в дренажный (рассасывающий) колодец, либо в существующий накопительный колодец, откуда впоследствии вода откачивается на открытый рельеф принудительно с помощью насоса (для глины, суглинка).

При варианте отведения очищенной воды самотеком из АГС выходной патрубок выведен на глубине 0,65 м (**G2**) (от уровня земли до нижнего края трубы), который

необходимо утеплить и заглубить ниже глубины промерзания грунта (не выше 1,5 м от уровня земли). Труба прокладывается на песчаную подушку с уклоном 1,5—2 см на метр в сторону точки сброса.

Не допускается сброс очищенной воды самотеком на открытые поверхности грунта, т. к. это обязательно приведет к намерзанию льда на выходе и, в конечном итоге, заблокирует выход чистой воды, и, как результат, к переполнению АГС.

Не производится отведение очищенной воды в глинистые грунты, т. к. глина является отличным гидрозатвором и обладает низкой пропускной способностью.

На рельеф (в пределах частного домовладения)

п/в — отведение очищенной воды принудительно.

Рекомендуется в грунтах с высоким уровнем грунтовых вод или низким коэффициентом фильтрации — глина, суглинок. Отвод производится на рельеф исключительно в пределах частного домовладения. Отводящий трубопровод закладывается на глубине 0,65 м (**G2**) (от уровня земли до нижнего края трубы) и выводится на поверхность грунта на расстояние не более 6—7 м от АГС, с целью соблюдения контруклона не менее 5—7 см/м. Контруклон обеспечивает отсутствие остатка воды в трубе и соответственно промерзания отводящей канализации в зимний период эксплуатации. Станция оснащается комплектом для принудительного водоотведения, в том числе аварийной сигнализацией и дренажным поплавковым насосом для порционной откачки очищенной воды. При таком способе отвода вода попадает на поверхность с максимальной температурой (в зимний период +10...+15 °C), что позволяет отводить воду на грунт в любое время года.

9. После присоединения подводящего/отводящего трубопроводов, электрических кабелей производится завершающая засыпка трубопроводов и котлована вручную песком. Оставшаяся часть высотой 100 мм засыпается естественным грунтом. Размещение и передвижение тяжелых предметов и спец. техники над АГС ЗАПРЕЩЕНО!

- Окончательная планировка рельефа производится с учетом следующих факторов:
- необходимо тщательно следить за герметизацией установки при закрытии крышки.
- любые виды заглубления крышки ниже уровня земли ЗАПРЕЩЕНЫ;
- к воздухозаборнику должен быть обеспечен приток свежего воздуха.

Особенности монтажа станций при высоком уровне грунтовых вод

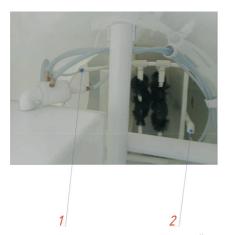
Длина и ширина котлована по периметру должны на 70 см превышать габаритные размеры монтируемой АГС.

Одновременно с копкой котлована в него вертикально по периметру устанавливается опалубка. Для устройства опалубки используются доски толщиной 50 мм, шириной 150 мм, длина равна высоте котлована.

В случае поступления в котлован большого количества воды для ее откачки на дно котлована устанавливается дренажный насос.

Корпус АГС монтируется на бетонное основание с арматурной сеткой шагом 250 мм. Арматура марки А III, сечением 10 мм. Бетонное основание делается на предварительно подготовленной «песчаной подушке». Производится обязательное крепление («якорение») АГС с помощью капронового каната с двух сторон. Между опалубкой и станцией засыпается цементно–песчаная смесь (1:4); опалубка не демонтируется. Обсыпка производится с подбивкой цементно–песчаной смеси под нижнюю округлую часть АГС с послойным уплотнением через каждые 200 мм и проливом водой каждого слоя с одновременным заполнением водой камер АГС до уровня водослива. Подавать воду для заливки можно с помощью шланга через люки обслуживания. Обратная засыпка станции без воды **ЗАПРЕЩЕНА!**

5. Запуск в эксплуатацию


Запуск в эксплуатацию рекомендуется производить в период положительных температур наружного воздуха.

Запуск осуществляется подачей в АГС сточной воды с одновременным включением системы аэрации, подключив компрессор к сети. Потоки воздуха направляются по камерам с помощью распределителей.

Выход АГС в штатный режим работы длится примерно 3—4 недели при условии постоянной аэрации и поступления сточных вод в объеме, соответствующем производительности станции.

До выхода АГС в штатный режим работы рекомендуется сократить использование моющих/чистящих средств в домашнем хозяйстве (в том числе для посудомоечных и стиральных машин).

Показателем достижения АГС штатного режима работы является вода без видимых включений и запаха на выходе.

1 — подача аэрации в приемной камере; 2 — подача аэрации в аэротенке;
 3 — подача аэрации в биореакторе аэробном; 4 — эрлифт откачки ила из вторичного отстойника;
 5 — эрлифт откачки ила из третичного отстойника.

6. Требования к подаче электроэнергии

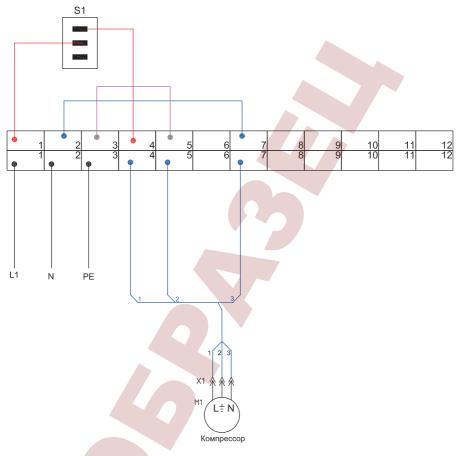
АГС «UNI-SEP» является энергозависимым объектом.

Станция стабильно работает при отклонениях напряжения электросети от номинала в пределах $\pm 10\,\%$.

Рекомендуется использование стабилизатора напряжения:

- для самотечного водоотведения мощностью 400 Вт;
- для принудительного водоотведения мощностью 1500 Вт.

При отключении подачи электроэнергии АГС продолжает работать как анаэробный септик. При возобновлении подачи электроэнергии оборудование АГС запускается автоматически.

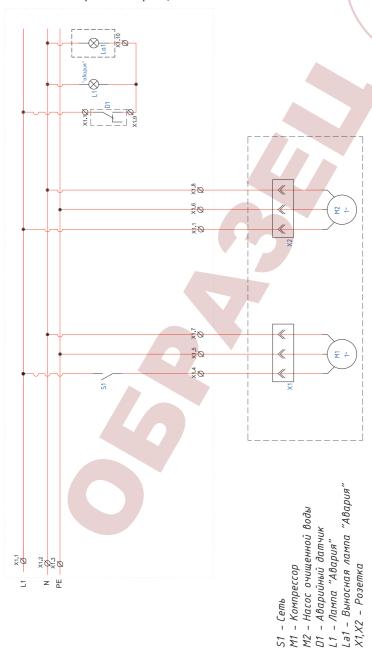

Таблица мощностей АГС (без резервного оборудования)

FP.	Само	тек	Принудительный выброс		
Модель «UNI-SEP»	Установленная мощность, Вт	Потребление электроэнергии, кВт/сут.	Установленная мощность, Вт	Потребление электроэнергии, кВт/сут.	
0,6	51	1,23	301	1,245	
0,8	51	1,23	301	1,25	
1	71	1,7	321	1,725	
1,6	71	1,7	321	1,737	

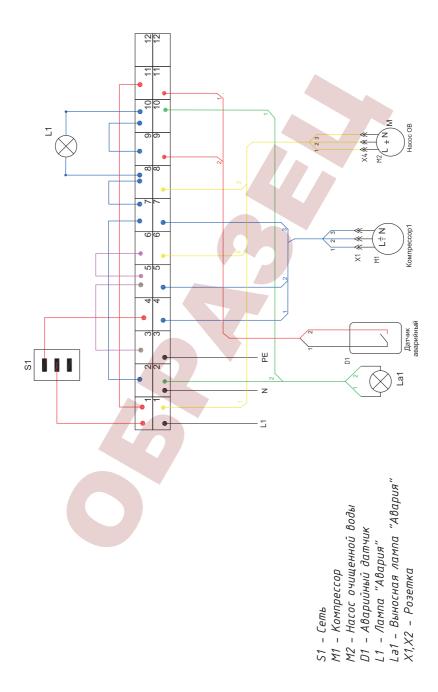
Электрические схемы подключения АГС «UNI-SEP» «UNI-SEP» с самотечным водоотведением: — схема электрическая принципиальная × Ø ξ . <u>×</u> Ø S1 – Сеть M1 – Компрессор X1 – Розетка

z H

– схема электрическая монтажная



S1 – Сеть


M1 – Компрессор X1 – Розетка

«UNI-SEP» с принудительным водоотведением:

— схема электрическая принципиальная

— схема электрическая монтажная

7. Условия зимней работы АГС «UNI-SEP»

При соблюдении рекомендаций по утеплению корпуса АГС в зависимости от региона строительства для зимней эксплуатации не требуется никаких дополнительных мер.

Внутри АГС происходят процессы окисления с выделением тепла. При температуре наружного воздуха не ниже -20 °C и наличии не менее 20 % паспортного притока хозяйственно-бытовых стоков АГС не требует никаких специальных зимних профилактических мероприятий.

Для регионов с частым понижением температуры более –20 °C рекомендуется принять меры для предотвращения замерзания в зимних условиях. Это можно сделать при монтаже несколькими способами:

- установить компрессор в отапливаемом помещении для подачи теплого воздуха в АГС;
- принять меры по дополнительной теплоизоляции корпуса и люков обслуживания.

«Консервация»

Данное мероприятие проводится при условии отсутствия поступления в АГС стоков в период более 3-х месяцев, то есть когда станция эксплуатируется сезонно.

При «консервации» необходимо:

- отключить компрессор и насос (если имеется) от электропитания, демонтировать их из АГС (хранить с сухом теплом месте);
- в каждую камеру поместить 1—2 пластиковые бутылки объемом 2 л или 5 л, наполненные песком на 50%;
- принять меры по дополнительной теплоизоляции люков обслуживания (использовать утеплитель, не впитывающий влагу). Накрыть по периметру пленкой и закрепить ее.

Во время периода «КОНСЕРВАЦИИ» в АГС не должны поступать стоки!

При запуске АГС в эксплуатацию необходимо извлечь бутылки из всех камер, смонтировать и подключить компрессор и насос (если имеется).

8. Рекомендации по эксплуатации АГС «UNI-SEP»

Организация эксплуатации любой станции, на которой осуществляется биологическая очистка, основана на жизнедеятельности живых микроорганизмов. Основной участник процесса биологической очистки — активный ил. Если возникают условия, неблагоприятные для развития, роста и, особенно, питания живого организма, то качество очистки ухудшается.

Для предотвращения возникновения вышеуказанной ситуации необходимо соблюдать культуру пользования сантехническими приборами и канализационной сетью.

Запрещается сброс в канализацию:

- строительного мусора, песка, цемента, извести, строительных смесей и прочих отходов строительства;
- полимерных материалов и других биологически не разлагаемых соединений (в эту категорию входят не растворяемые в воде туалетная бумага и салфетки, средства контрацепции, гигиенические пакеты, фильтры от сигарет, пленки от упаковок и тому подобное);
- нефтепродуктов, горюче-смазочных материалов, красок, растворителей, антифризов, кислот, щелочей, спирта и тому подобного;
- бытового, садового мусора, удобрений и прочих отходов садоводства;
- мусора от лесных грибов, пищевых отходов (остатков еды, мусора от очистки овощей и фруктов);
- большого количества масла/жира (например, из фритюра);
- промывных вод фильтров бассейна; регенерационных вод от установок подготовки питьевой и технической воды;
- большого количества стоков после отбеливания белья хлорсодержащими препаратами;
- стока от стиральных машин, превышающего 1/10 часть от хозяйственно-бытовых стоков, поступающих в станцию;
- чистящих средств, содержащих хлор и другие антисептики в больших количествах;
- лекарств и лекарственных препаратов;
- шерсти, фекалий домашних животных, а также корма.

Запрещается повторная подача очищенных стоков в АГС. В случае недостаточного количества воды, определяющего производительность АГС (привозная вода и т. д.), необходима разработка индивидуальной системы очистки стоков.

На неисправности, вызванные нарушением этих пунктов, а также возникшие вследствие пожара или иных природных явлений, гарантия не распространяется.

Разрешается сброс в канализацию:

- мягкой, легко разлагающейся туалетной бумаги;
- стоков стиральных машин, при условии применения стиральных порошков без хлора;
- кухонных стоков с использованием моющих средств без хлора;
- душевых и банных стоков;
- небольшого количества средств для чистки унитазов, сан. фаянса и кухонного оборудования 1 раз в неделю.

Для эффективной работы станции необходимо не только избегать отравления ее химическими препаратами, но и стараться активизировать течение биологических процессов, а именно:

- использовать моющие, чистящие, дезинфицирующие средства, в состав которых входят биологически разлагаемые компоненты;
- не производить уборку, стирку, чистку и другие работы одновременно, чтобы не допускать массового сброса химических веществ в АГС;
- допускается использование биопрепаратов согласно инструкции производителя.

Во время эксплуатации АГС необходимо производить плановое техническое обслуживание согласно регламенту, рекомендованному производителем.

9. Регламент и периодичность технического обслуживания AГС «UNI-SEP»

Необходимо время от времени осуществлять контроль правильности работы оборудования визуально при открытой крышке. Периодичность обслуживания зависит от интенсивности эксплуатации, поэтому схема обслуживания всегда индивидуальна. Автоматический контроль и унифицированные технологии, применяемые «СБМ-Групп», обеспечивают долговременную и надежную эксплуатацию оборудования, что позволяет избежать частого обслуживания, за исключением некоторых технологических операций, таких как:

Раз в 6 месяцев:

- проверка работы системы аэрации;
- удаление 50% ила со дна приемной камеры (А) с помощью фекального насоса;
- полное опорожнение третичного отстойника (E) с помощью фекального насоса и заполнение его чистой водой;
- откачка содержимого аэробного биореактора (Д) на 1/3 со дна с помощью фекального насоса;
- очистка фильтров компрессоров;
- промывка эрлифтов в обратную сторону чистой водой в случае засора.

Раз в год:

 удаление ила полностью из приемной камеры (A) с помощью ассенизационной техники или фекального насоса и заполнение ее чистой водой.

Раз в 10 лет:

- полное опорожнение и промывка корпуса станции и заполнение его чистой водой;
- замена или промывка ершовой загрузки;
- замена или промывка перфорированных аэрационных труб;
- замена аэрационного элемента.

Эксплуатацию дополнительного и электрооборудования осуществлять в соответствии с прилагаемой инструкцией завода-изготовителя.